
5 Infinite Groups

All of the groups we’ve seen so far are finite in size. We can also construct groups of infinite size; these are
known simply as infinite groups.

A quick review: iso- means the same and -morphic means form. Two groups are considered isomorphic if
there exists a one-to-one correspondence taking each element of the first group to an element of the second
group—and vice versa—so that the products of the elements map in the same way. Essentially, by renaming
the elements of one group, the two groups appear identical. Isomorphic groups have the same structure and
size, and thus the group table’s structure is also preserved.

1. Where have you come across the roots iso- and -morphic before?

2. Can two groups be isomorphic if they have different orders?

3. The rotation group of the regular hexagon, also known as the cyclic group of order 6, C6, has six
elements: the identity, and rotations of π

3 , 2π
3 , π, 4π

3 , 5π
3 radians. A rotation of π

3 generates the group.

(a) Which other rotation can generate the group on its own?

(b) What is the period of each element?

4. C6 has the same number of elements as the dihedral group D3.

(a) Are the two groups isomorphic? How do you know?

(b) What is the period of each element of D3?

(c) What can you say if the set of the periods of each group’s elements are not the same?

(d) Which subgroups of the cyclic group C6 and D3 are isomorphic?

5. Can an infinite group and a finite group be isomorphic?

6. Do you think all infinite groups are isomorphic to each other? Find a counterexample if you can.

If an infinite group was somehow “bigger” than another, they wouldn’t be isomorphic.3 This raises the question:
are all infinities equally big?

We can formalize the notion of sizes of infinity. Let’s say that two infinite sets are of the same size if their
elements can be put into a one-to-one correspondence with each other. For example, the natural numbers
{1, 2, ...} = N and negative integers {−1,−2, ...} = −N are of the same size because we have the one-to-
one correspondence N ∋ n↔ −n ∈ −N. 1 is paired with −1, 2 is paired with −2, 3 is paired with −3, and so
on. Every element of the positive integers has exactly one “partner” in the negative integers, and vice versa.

7. Make guesses to the relative sizes of the following pairs of sets. You may use shorthand like |a| < |b|,
|a| > |b|, |a| = |b|, where |S| denotes the order of S. After you have made your guesses, we will analyze
some of the cases and you can find out how good your intuition was.

(a) natural numbers, N vs. positive even numbers, 2N
(b) natural numbers, N vs. positive rational numbers, Q+

(c) natural numbers, N vs. real numbers between zero and one, [0, 1)
(d) real numbers, R vs. complex numbers, C
(e) real numbers, R vs. points on a line
(f) points on a line vs. points on a line segment
(g) points on a line vs. points on a plane
(h) rational numbers, Q vs. Cantor set4

It turns out that studying infinity involves some strange mathematics. For instance, even though it seems
that there should be half as many positive even numbers as natural numbers (see 7a), we can construct a
one-to-one correspondence between the two sets, such that every natural number n is paired with a positive
even integer 2n and vice versa. The existence of this correspondence means that the two sets are equal in
size. In symbols,

(2N ∋ 2n↔ n ∈ N)↔ |2N| = |N|.

3After reading this section, can you think of an example of two infinite groups that aren’t isomorphic?
4Consult an online source for the definition of the Cantor set.
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More surprisingly, we can establish a one-to-one correspondence between the non-negative rational numbers
Q≥0 and the natural numbers. Draw the numbers Q≥0 in a grid as shown in Figure 1, and pair these numbers
up with the numbers 1, 2, 3, ... in the pattern shown with the arrows. You will eventually list all of the non-
negative rational numbers, multiple times, into a correspondence with the natural numbers. To make it one-
to-one, only pair the rational numbers that are in simplest form. For example, we pair 2 with 1

1 instead of 0
2 ,

since 0
1 is the same number and is already paired with 1. This method prevents multiple natural numbers from

being paired up with the same rational number: the correspondence is now one-to-one, and is depicted in
Figure 2.

The real numbers between 0 and 1, however, cannot be put into a one-to-one correspondence with N (see
7c). We will prove this by contradiction. Suppose I told you that I have paired each real number 0 ≤ rk < 1
with a unique natural number k, and vice versa. Then, you can construct a real number rω whose 1st digit
(after the decimal point) differs from r1’s, whose 2nd digit differs from r2’s, and so on. In other words, it differs
from rn in the nth digit. We can make better sense of this construction by writing the numbers out in a table, as
shown in Figure 3. Your new number rω is at the bottom; it differs from all the previous numbers in at least one
place, so it is a new real number. Therefore, my original list is incomplete, and such a correspondence doesn’t
exist. This argument is called a diagonalization argument because the differing digits make a diagonal.
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Figure 1: A correspondence between Q+ and N,
but not one-to-one.

Figure 2: The previous correspondence, with du-
plicates parenthesized but not counted; it is now
one-to-one.

Decimal Expansion→
r1 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
r2

1
4 0. 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · ·

r3
π
4 0. 7 8 5 3 9 8 1 6 3 3 9 7 4 4 8 3 · · ·

r4 C10 0. 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 · · ·
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rω 0. 1 6 6 5 9 2 · · ·

Figure 3: Cantor’s diagonal argument. Notice how, by construction, rω differs from ri in the circled digits.

8. Now, please return to Problem 7 and revise your answers. Justify each answer by producing a one-to-
one correspondence, or showing the impossibility of doing so. Part (h) is an optional challenge.

The infinities in Problem 7 come in only two sizes: countable infinity, like the number of natural numbers; and
uncountable infinity, like the number of real numbers. There are, in fact, an infinite number of sizes of infinity,
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but these two main types are the only ones we’ll deal with in this class.5

Two infinite groups can be the same infinite size and still not be isomorphic, in the same way that two finite
groups of the same size are sometimes not isomorphic (like D3 ̸= S6). For example, the group of all rotations
of a rational number of degrees between 0◦ and 360◦ about the origin is countably infinite. So is the group of
integers—positive and negative—under addition. But these two groups have completely different structures.
For example, the former has two elements which are their own inverse: 0◦ and 180◦. The latter has only one
such element: 0◦.

9. Here’s a list of infinite sets, each with an operation. For each pair, answer: (i) Does it form a group?
(ii) Which previous group(s) is it isomorphic to, if any?

(a) natural numbers, addition

(b) integers, addition

(c) even integers, addition

(d) odd integers, addition

(e) rational numbers, addition

(f) real numbers, addition

(g) complex numbers, addition

(h) integers, multiplication

(i) integer powers of 2, multiplication

(j) rational numbers, multiplication

(k) rational numbers excluding 0, multiplication

(l) real numbers excluding 0, multiplication

(m) complex numbers, multiplication

(n) rotation by a rational number of degrees

(o) rotation by a rational number of radians

(p) rotation by an integer number of radians

10. Can an irrational number taken to an irrational power ever be rational? Consider the potential example

a =
√
2
√
2
. To help you answer this question, let b = a

√
2. Simplify b, and explain why we don’t need to

know whether a is rational or irrational.

5Are there any infinities between the two we’ve discussed? This question, known as the continuum hypothesis, is very deep. It turns
out that both the answer “yes” and “no” are consistent with the rest of our mathematics, so either can be taken as an axiom.
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